Out of first 100 natural numbers,
three numbers are chosen without replacement. The probability that all these
numbers are divisible both by 2 and 3 is:
Solution:
(a)4/11
(b) 4/55 (c) 4/33
(d) 4/1155
Solution follows here:
Out of first 100
natural numbers, three numbers can be chosen in 100C3 ways.
A number to be
divisible by 2 and 3, it is to be divisible by LCM of 2 and 3 ie., 6.
Out of first 100
natural numbers, all numbers divisible by 6 are:
6,12,18,……96
=> these are 16 in number => number of possibilities of picking three
numbers out of these 16 are 16C3
Probability = number of desired possibilities / number
of all possibilities
= 16C3 / 100C3 =
16*15*14 / 100*99*98 = 4/1155
Answer (d)
No comments:
Post a Comment