What is the
number of distinct terms in the expansion of (a+b+c)20?
Solution follows here:
(1)231 (2)253 (3)242 (4)210 (5) 228
Solution:
This
is application of binomial theorem:
(x+y)n =
nC0 xn y0 + nc1 xn-1y +nC2 xn-2y2 +….+
nCn yn
Considering
(a+b) as first term and ‘c’ as second term observe the following binomial
expansions:
(a+b+c)1
= 1C0 (a+b)1co + 1C1 (a+b)0c1
Number
of terms:
2*1
+ 1*1
(a+b+c)2 = 2C0
(a+b)2 co
+ 2C1 (a+b)1c1 +
2C2 (a+b)0c2
= 2C0 (a2+2ab+b2)*1
+ 2C1 (a+b)*c + 2C2 (1*c2)
No. of terms: 3*1 + 2*1
+ 1*1
(a+b+c)3 =
3C0 (a+b)3 co +
3C1 (a+b)2c + 3C2 (a+b)1c2 +
3C3 (a+b)0c3
= 3C0
(a3+b3+3a2b+3ab2) co +
3C1 (a2+b2+2ab)c + 3C2 (a+b)c2 +
3C3 1* c3
No.of terms: 4*1 +
3*1
+ 2*1 + 1*1
If
we observe this pattern, summary is:
(a+b+c)1 yields
2*1 + 1*1 =
2+1 terms
(a+b+c)2 yields
3*1 + 2*1 + 1*1 =
3+2+1 terms
(a+b+c)3 yields
4*1 + 3*1 + 2*1 + 1*1 = 4+3+2+1 terms
Going
by this logic,
(a+b+c)n yields
(n+1)+n+(n-1)+……..+3+2+1 = ∑(n+1) terms
=
(n+2)(n+1)/2
(as we know that Σn = (n+1)n/2)
Distinct
number of terms in (a+b+c)20 =
(20+2)(20+1)/2 = 11*21 = 231
Answer (1)
No comments:
Post a Comment