Tuesday, 11 October 2011

Puzzle-5 (XAT-2008)

ABCD is a square. P is the midpoint of AB. The line passing through A and perpendicular to DP intersects the diagonal at Q and BC at R. 
If AB =2 then PR = _______?                                      

(A) 1/2        (B) √3/2      (C) √2         (D) 1 (E) None of these  

Solution follows here:

Solution:


In ∆ADM, as ÐAMD = 900,
ÐADP + ÐDAM = 90


                                ------(1)
And also  as ÐDAP = 900, this can be split into
ÐMAP + ÐDAM = 900

                                ------(2)
From (1) and (2), ÐADP = ÐMAP
 ÐDAP = 900 = ÐRBP



By A-A-A similarity, ∆ADP ~ ∆ARB

AB/AP = BR/AP => 1 = BR/1 => BR = 1

Now on right angle ∆PBR, applying Pythagoras theorem,

PR2 = PB2 + BR2 = 1 = 1 = 2

PR = √2
Answer (C)







No comments:

Post a Comment