What is the maximum
possible value of 21Sinx+72Cosx?
Solution:
(1)21 (2) 57
(3) 63 (4) 75 (5) None of these
Solution follows here:
It is a direct
trigonometric formula based one.
Maximum value of
aSinx+bCosx = √(a2+b2)
√(a2+b2)
= √(212+722) = √(32 72+32 242)
= 3 √(72+242)
= 3 √(49+576) = 3 √625 =
3*25 = 75
Answer
(4)
No comments:
Post a Comment